
Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 1

Electrical Ground Support Equipment

for the “Obstanovka” Project

SGF Kft. Prepared by:
 Sándor Szalai
 János Sulyán
 Kálmán Balajthy
 Bálint Sódor

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 2

Linst of changes:

1. HK decoding:
PWCconfig.ini th [HKDefinitionFiles] section changed. Description files can be
added for a packet and sid pair.

[experiment ID].[sid] = description file path
2. Graph browsing function:

A saved waveform can be evaluated in offline mode. It is possible to play back
and scroll manually a waveform from a file.

30.03.2007

3. HK decoding:
Linear interpolation on HK data.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 3

Content

1. General introduction of Electrical Ground Support Equipment 8

2. The EGSE for Obstanovka ... 11

3. The EGSE for BSTM and DACUs ... 13
3.1 Data communication inside the EGSE system.. 14
3.2 The tasks of the embedded computer... 18
3.3 The tasks of the user interface computer ... 20
3.4 User interface of the control PC ... 22

3.4.1.Menu line.. 25
3.4.2.Toolbar line .. 27
3.4.3. Tabpanels .. 28
3.4.4. Visibility control .. 29
3.4.5. Sensors’simulation control ... 29
3.4.6.Sensors’ control.. 29
3.4.7. Script control ... 31
3.4.8. Quota button.. 32
3.4.9. TM flow archiving (save to file).. 32
3.4.10. Amateur Radio TM flow reception ... 32

3.5 Program modules of embedded processor ... 37
4. Functional block diagrams of cards of the embedded system............................... 40

5. PWCscript – capture/playback module documentation... 43
5.1. General description... 43
5.2. User documentation .. 43

5.2.1 Syntax of the PWCscript xml file: ... 43
5.3 Development documentation... 50

5.3.1. DomParserDLL.dll.. 50
5.3.2. Additional functions to PWCegse source ... 50
5.3.3. IRFDomParserDLL communication interface .. 52

6. Decoder files of the housekeeping packets... 54

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 4

List of figures

Figure 1. General architecture of EGSE .. 8
Figure 2. The functional units of the standalone box... 10
Figure 4. Functional block diagram of the EGSE for BSTM & DACUs without sensors 13
Figure 5. Functional units of the embedded processor box ... 19
Figure 6. The icon of the PWCegse.exe on the desktop .. 22
Figure 7. The list of HK decoding definition files... 24
Figure 8. The main panel of PWCegse ... 25
Figure 9. SAS3 commands ... 30
Figure 10. Parameter definition ... 30
Figure 11. CORES Command window and XML example .. 31
Figure 12. Structure of the embedded software ... 37
Figure 13. Functional Blocksheme of Processor Card... 40
Figure 14. Block diagram of the12-bit DAS Module with Programmable Gain............... 41
Figure 15. Functional Blockcheme of the two channel analog output card....................... 42
Figure 16. The Script Control panel in Recording Mode .. 47
Figure 17. The Script Control panel in Playback mode... 47

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 5

Abbreviations

ADC Analogue Digital Converter
AGND Analogue Ground
AMR Amateur Radio
AMSTM Analogue Slow Telemetry
APM Advanced Power Management
ARC Amateur Radio Channel
AT Advanced Technology (personal computer)
ATX Specification for PC motherboard architectures
BIOS Basic Input Output System
BITS Bit Serial System
BSC Binary Synchronous Communication protocol
BSTM Block of Storage of Telemetry Information Unit
CCSDS Consultative Committee for Space Data Systems
COM Computer output (parallel port)
CORES Correlating Electron Spectrograph (10eV – 10KeV)
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processor Unit
CRC Cyclic Redundancy Code
CWD1, CWD2 Integrated Units of Experiments
CWZ-WP Combined Wave Sensor
DAC Digital Analogue Converter
DACU1, DACU2 Data Acquisition and Control Unit
DC Direct Current
DFM1, DFM2 Flux gate magnetometer
DOS Disk Operating System
DMA Direct memory access
DP Spacecraft potential monitor
EGSE Electrical Ground Support Equipment
EM Engineering Model
ETX End of Text
EPP Enhanced Parallel Port
FDD Floppy Disk Drive
FIFO First In First Out memory organisation
FM Flight Model
FPU Floating Point Unit
GB Gigabyte
GMT Greenwich Mean Time
Gnd Ground
h Hexadecimal number
HDD Hard Disk Device
HK House Keeping
HSO Hungarian Space Office
Hub Hub is a place of convergence where data arrives from one or

more directions and is forwarded out in one or more other
directions

HW Hardware

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 6

IEEE Institute of Electrical and Electronics Engineers
IF Interface
IKI Institute of Space Research (Russian abbreviation)
ISA Industrial Standard Architecture
ISS International Space Station
ICS Internal Control System
ID Identification
IDE Integrated Device Electronic (ISA bus developed for IBM PC)
IP Internet Protocol
I/O Input / Output
KFKI RMKI KFKI Research Institute for Particle and Nuclear Physics
LCD Liquid Crystal Display
LED Light Emitted Diode
LP Langmuir probe
MMU Memory Management Unit
MMX Multimedia extension
NAK Negative Acknowledge
OECS Onboard Electronics Control System
OMTC Onboard Monitoring Telemetry Channel
OMTS Onboard Monitoring Telemetry System
PC Personal Computer
PCI Peripheral Component Interconnect local bus
PID Process ID
PWC Plasma Wave Complex
QM Qualification Model
RD Receive Data
RFA Radio-Frequency Monitor
RS 232/422 Recommended Standard 232/422
RxTx Receive/Transmit
SAS3 Signal Analyzer and Sample
Sc Scientific
SID Structure Identification
SGF Space and Ground Facilities Ltd
SOH Start of Header
SPP Scalable Parallel Processing
STR Strobe
STX Start of Text
SVGA Super Video Graphics Array
SW Software
TBC To Be Clarify
TBD To Be Defined
TC Telecommand
TD Transmit Data
TM Telemetry
TPC/IP Transmission Control Protocol/Internet Protocol
TTL Transistor-Transistor Logic
UART Universal Asynchronous Receiver Transmitter
UIF User Interface

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 7

USB Universal Serial Bus
VGA Video Graphics Adapter
VSA Virtual System Architecture

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 8

1. General introduction of Electrical Ground Support Equipment

Concept of Electrical Ground Support Equipment (EGSE) is the name given to the

tools required for electrical testing of flight systems. The full checkout of the
“Obstanovka” requires several functional units, power supply units and communication
channel simulators (onboard Ethernet network, amateur radio channel, bit serial data
acquisition system and the so called analog monitoring system). In case of EGSE
functions for BSTM and DACU units required the data flow simulators of sensor units.
The simulators have to represent the real hardware interfaces. Generally the EGSE of any
onboard data acquisition system has four interfaces (see Fig. 1.):

1. User interface to monitor and control the system (display and keyboard);
2. Instrument (space craft) interface, realized on dedicated hardware

elements;
3. Data flow source (data simulators of sensors, most cases dummy data flow

is satisfactory);
4. Network interface to distribute and archiving the TM data flow (Ethernet).

Logical Interfaces of EGSE

BSTM &
DACUs

User

Network

Instrument

EGSE

Network
Data source

Figure 1. General architecture of EGSE

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 9

The PWC-EGSE system simulates the data traffic of the experiments and ISS

onboard equipment connected to the PWC computers BSTM, DACU1 and DACU2. The
EGSE system consists of an embedded PC104 computer producing the data traffic in real-
time, and a connected user interface computer (UIF). This commercially available
computer displays the data sent to the ISS onboard system, and enables to switch the
power supplies and to send commands and parameters to the experiments on user
interaction. The EGSE for Obstanovka (and for its data acquisition and control
computers) system consists of two main units: a commercially available computer PC,
with Ethernet interface, and a stand alone box, which contains an ISS signals simulator
part (OMTC signals) and simulators of sensor units.

The stand alone box realizes a low level simulation of signals connecting to the
BSTM and DACUs units. This low level signal simulator box contains a hard disk drive
(HDD) to make offline telemetry data read out procedure and gives possibilities to
prepare measuring sequences to delivery onboard. The PC software code to be
implemented enables the EGSE to process and analyze housekeeping and science data
both in real time and from archives in off line mode. The delivered configuration has
adequate storage capability for temporary data storage and it will not support permanent
data storage. The possible sensor stimulators are not part of the EGSE, they are provided
by the experimenter teams.

The Onboard Monitoring Telemetry Interface (OMTC) unit has four different type
data acquisition channels:

1. “Analogue housekeeping” data monitoring system simulator;
2. Bit serial digital interface;
3. Amateur radio interface channel;
4. ISS Ethernet network

Data stream acquired by the instrument interface unit is transferred to PC via

Ethernet communication channel. The sensor simulators send out adequate signals for
BSTM and DACUs. The OMTC simulator and the sensor simulators are built in a
common box. The picture of EGSE units is shown on Fig. 2. An embedded processor
controls both simulators. The processor unit is built on an Intel type microprocessor on
which a real time multitasking Linux based operating system runs. The communication
between the embedded processor and the PC is going on Ethernet connection using
TCP/IP protocol.

The standalone box can be used also as the instrument interface of the Obstanovka
system, excluding the sensor simulator part. The “user interface” which realized on the
PC by software can be served the function of BSTM & DACUs EGSE and the function of
Obstanovka EGSE. On the PC should run Windows 2000 or XP, the dedicated
“PWCegse.exe” program gives the user interface. It is a graphical interface to control the
system activity and to visualise the telemetry data flow. The software has developed in C
language, with the National Instrument firm software, in the integrated development
environment (LabWindows/CVI). The configuration of Obstanovka EGSE is shown on
Fig. 3. and the configuration to test the BSTM & DACUs is shown on Fig. 4.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 10

Figure 2. The picture of the EGSE units (standalone box & PC)

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 11

2. The EGSE for Obstanovka

DACU2

CORES LP DP RFA DFM2 CWZ-VP

CWD2

Ethernet

DACU1

SAS3 LP DP DFM1 CWZ-VP

CWD1

Ethernet

Ethernet

HUB

BSTM
2x100Gb

Ethernet

Am. Radio

An. STM

Sc. STM

OutsideInside

Power

Power

Figure 3. Block diagram of Obstanovka and EGSE configuration

Since Linux is installed on BSTM, DACU1 and DACU2, working under Linux on

EGSE too offers lot of advantages, like monitoring active tasks on BSTM, observation
Ethernet data traffic and file allocation on every HDD.

Scientific data collected on removable HDD drives are investigated and evaluated by
EGSE PC after plugging one 100 GB HDD in HDD Rack of EGSE PC.

Outside

28 V Power
Supply Unit

OMTC
Simulator

EGSE

Ethernet

BSTM
DACU1
DACU2

CWD1
CWD2

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 12

EGSE standalone box operating temperature is from +5o C to +35o C. The relative

humidity may not more than 80% at 35 C. Nominal input voltage of EGSE is 230V +/-
10, 50 Hz. EGSE will be protected and not to broke down if any failure occurs in EM,
QM or FM. Network cable length of EGSE is maximum 5 m. Specifications of input and
output circuits of EGSE meet the requirements of onboard electronics. Outputs and inputs
of EGSE contain short circuit and over voltage protection.

Set of EGSE contains:

- EGSE
- Complete cables,
- Electronic diagrams,
- Certificate,
- Packaging materials,

Construction of EGSE makes required maintenance possible.

Electric strength between EGSE body and any electronic circuit must be:
- Not less then 20 MΩ at 25o C +/- 10 C ambient temperature and a relative

humidity less than 80%
- Not less then 1 MΩ at 25o C +/- 10 C ambient temperature and a relative humidity

less than 98%
- Not less then 5 MΩ at 40o C +/- 10 C ambient temperature and a relative humidity

less than 80%

Since the engineering model is identical with flight model it is available for

requirements of technological tests. The engineering models of BSTM, DACU1 &
DACU2 are delivered together with EGSE.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 13

3. The EGSE for BSTM and DACUs

The PWC-EGSE system simulates the data traffic of the experiments and ISS

onboard equipment connected to the PWC computers BSTM, DACU1 and DACU2. The
EGSE system consists of an embedded PC-104 computer producing the data traffic in
real-time, and a connected user interface computer (UIF). This computer displays the data
sent to the ISS onboard system, and enables to switch the power supplies and to sent
commands and parameters to the experiments on user interaction. The UIF is a
commercially available PC having operating system Windows 2000 or higher version.

DACU1 DACU2

Embedded Processor & HW Sim. of Exp. Signals

E
th

er
ne

t

EGSE of
BSTM&DACUs

PWC

C
O

R
E

S

LP D
P

R
FA

D
FM

2

C
W

D

Power

LP D
P

D
FM

1

C
W

D

S
c.

 S
TM

A
n.

 S
TM

P
ow

er

Ethernet

ISS
Signals

User IF & Cntrl PC

Power

S
A

S
3

S
im

.
E

th
er

ne
t

BSTM
2x100GB Ethernet HUB

A
m

. R
F

IS
S

 E
th

.

Figure 4. Functional block diagram of the EGSE for BSTM & DACUs without sensors

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 14

3.1 Data communication inside the EGSE system

The TCP/IP based communication is used between control PC and embedded
processor. The embedded computer acts as server, the User Interface (UIF) PC as client.
Port numbers are 5193 for receiving data in the UIF PC, and 5194 for sending data to the
embedded computer from control UIF PC. The connection will be realized on the effect
pressing 3rd button in the toolbar or from the menu (menu> network > Register In
Direction / Register Out Direction / Connect Both Direction). Connection will be
demolished by the initialization of operator (menu or the toolbar) or in the case of
switching off the embedded processor box of EGSE.

The data structure of the BSTM-DACU communication - between the two parts of
the EGSE system - is preserved and extended with the leading “task” field. The task (i.e.
the origin / destination) is stored in the low nibble of the HK field of the communication
structure.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 15

The EGSE uses the following data structure in the IP communication in both

directions:

Name Length Description Remark
PID 2 packet ID (experiments number * 16) + 0x880C
Seq 2 sequence count increasing value | 0xc000
Len 2 data length length of data bytes – 1, max value is 260
Sec 1 seconds seconds in time stamp: value = 0 –59
Min 1 minuets value = 0 – 59
Hour 1 hour value = 0 – 23
Day 1 day value = 1 – 31
Month 1 month value = 1 – 12
Year 1 year value = 0 corresponds to year 1900
Type 4 packet type always = 0x30000020
HK 1 Housekeeping task information* in 4 bits, when HK + 0x20
SID 1 structure identifier values are described by the experiments
Data 261 payload number of used bytes = len + 1

* see previous chapter

The data structure (packet) is starting with a synchronization pattern (32 bit). It is key
element of the data decoding procedure. Each TM decoding function is starting with the
searching of the starting 32 bit long synch word in the data flow from the embedded
processor data stream. The synchronization bit pattern was selected by the
recommendation of the CCSDS. A study was performed, at the instigation of the CCSDS,
to determine a pair of Transfer Frame synchronization markers with relatively low false
alarm probability, when these patterns were auto-correlated or pair wise cross-correlated.
The tests included auto-correlation of each pattern with itself, with its complement, with
its reserve (or mirror), and with the reserve complement. As a result of the above-
mentioned tests, the following pair of 32-bit synchronization markers was recommended:

SYNC MARKER 1 (hexadecimal) = 1 A C F F C 1 D
SYNC MARKER 2 (hexadecimal) = 3 5 2 E F 8 5 3
The Sync Marker1 (1ACFFC1Dh) was selected for the Obstanovka experiment.

 At the telecommands we have been implemented cyclic redundancy code (CRC)
for error detecting. CRC error checking uses a complex calculation to generate a number
(word) based on the data transmitted. The sending device (TC preparation unit) performs
the calculation before transmission and sends its results to the receiving device (BSTM) in
the last word of the TC packet. The receiving BSTM repeats the same calculation; the
onboard result will be compared with the last word of the TC. If both calculation results
are the same, it is assumed that the transmission was error-free, so the TC is correct and
can be executed.

The encoding algorithm is shown on Figure 8. In the encoding algorithm shift
registers are used. To encode, the storage stages are set to ’one’, gates A and B are
enabled, gate C is inhibited, and (n-16) message bits are clocked into the input. They will
appear simultaneously at he output. After the bits have been entered, the output of gate A
is clamped to ’zero’, gate B is inhibited, gate C is enabled, and the register is clocked a

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 16

further 16 counts. During these counts, the required check bits will appear in succession at
the output.

The TCs generated by EGSE are having the starting 32 bit long synchronization
marker (Marker 1 = 1ACFFC1Dh) and the closing CRC word. The realized CRC
algorithm in C language is the following:

//The pointer of the buffer is *pBuff
//iBytes = number of the bytes (length) on which calculates the CRC
void CalculateAndSetCRC(unsigned char *pBuff, int iBytes) {

int i;
unsigned short w;
wCyclRedCode = 0xFFFF;
for (i=0; i < iBytes-1; i++) { //The Length is DataBytes-1
 wCyclRedCode = CrC(pBuff[i], wCyclRedCode); //Packet CRC Calculation
}
pBuff[i++] = (unsigned char)(wCyclRedCode & 0x00FF); //Low bites part of CRC
w = (wCyclRedCode & 0xFF00) >> 8; //High bites part CRC
pBuff[i] = (unsigned char)(w & 0xFF);

}

The BSTM computer sends powering commands related to the experiments to
both DACU units, furthermore telecommands to several experiments. The description of
each experiment contains detailed information about the structure of its telecommands.
The commands are transferred as the data part of a TM structure message.

Exp Name SID HK DACU program data description

1 DACU1 0 0 psw_w power switch command
2 DACU2 0 0 psw_w power switch commands
4 LP1 0 0 lp_w telecommands
5 LP2 0 0 lp_w telecommands
6 DP1 0 0 dp_w telecommands
7 DP2 0 0 dp_w telecommands
8 RFA 0 0 rfa_w telecommands
10 DFM2 0 0 dfm2_w test mod on / off
11 CORES 0 0 cores_w telecommands

The data part of the command is different by each experiment, and contains all necessary
bytes to be forwarded to that experiment. The power switch commands are treated as an
additional “experiment” in this concept.

For example the following command switches the experiment CORES power on:

ID = 0x88BC //The value 0xB = 11 in the bit positions 4-10 means CORES.

//The other bits are used to check command validity. The (id &
// 0xF80F) must be 0x880F !

Seq = 0xC000 //Not important, but any skip can be reported in the HK data
Len = 0 //Means one byte payload
Sec = 0 //The time and day information is meaningless in case
Min = 0 // of ISS-PWC communication
Hour = 0
Day = 0

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 17

Month =0
Year = 0
Type = 0x30000020 //used to check command validity.
HK = 20 //unimportant
SID = 0 //meaningless
Data [0] = 8 // is the required value for the power switch unit to switch

// CORES on
Data[1]…data[260] //are meaningless

The powering commands for the power switch unit are as follows:

Experiment On Off
LP 0 1
DP 2 3
CWD 4 5
DFM 6 7
CORES 8 9
RFA 10 11

The detailed commands that control the experiments aren’t complete yet. They are

/ will be defined by the experiments separately. The detailed science data structure of the
experiments is also to be defined! The requirements, which science data are to be sent in
case of the visibility in different channels, are also to be defined!

The User Interface activates in the embedded system different tasks, the related tasks are:

Task UIF -> embedded
1 set analog output
2 activate burst mode of SAS3
3 activate burst mode of CORES
4 switch power on / off
5 set DFM2 test on / off
6 CORES test command
7 LP / DP command
8 set radio visibility

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 18

3.2 The tasks of the embedded computer

To simulate the digital signals of sensors there is a dedicated board, which has
analog inputs too, as illustrated in Figure 5. The Figure 6 shows the simulation board of
the analog inputs of the sensor units, it has two analog outputs. In case of all sensor
simulation they will be parallelized. On the page 20 and 21 is the circuit diagram of the bit
serial telemetry system simulator card. The Ethernet network of ISS and the Amateur
Radio interface are the parts of the processor board, 82559 LAN Controller.

There are seven experiments connected via serial lines to the DACU units. Six of
them are connected via RS422 interface, one via RS232 interface. The Binary
Synchronous Communication (BSC) protocol described in other ISS documents is used
with the experiments connected via the RS422 interface. The DFM2 experiment has its
own special protocol. The experiment’s behavior, the accepted commands and parameters
are described in separate documents.

The SAS3 experiment sends data though the Ethernet to the BSTM computer, and
informs the DACU1 computer when the “burst mode” of data collection is started. The
“burst mode” is activated in the DACU2 computer through a special message from the
CORES experiment. The embedded computer has some analog output signals to produce
input for the CWD and LP1 experiments.

The ISS onboard system has several communication channels:
• The slow telemetry system measures 6 analog signals in the range of 0 – 10 V

with a sample rate of 2 Hz.
• The byte serial interface collects 128 bytes width information with a sample period

of 47Hz.
• Ethernet networks

There are two Ethernet channels for communication with Earth:

1. Amateur radio channel, only to send data to the Earth.
2. The ISS onboard Ethernet channel enables a bi-directional connection.

Experiments data are sent from the BSTM to the ISS in one direction, and
commands arrive from the ISS to the DACUs and experiments in the other
direction.

These functions (ISS communication channels and data flow simulation of sensors) are
built in the embedded processor system. The function (the logical protocol) realized partly
by the software running in the embedded processor and by dedicated hardware units. The
functional HW units are shown on the Figure 5.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 19

ISS Network
Am. Radio

 DFM1 (11)
 CWZ-VP-1 (4)
 CWZ-VP-2 (4)

CORES
LP-1, LP-2
DP-1, DP-2
RFA
DFM2

SAS3Ethernet

Processor

ADC

DAC (2 outputs)

Serial IFs

Embedded Pr. Unit

To the ISS
connectors

To Sensors
of the PWC

19

7

Bit Serial IF

4

4

Figure 5. Functional units of the embedded processor box

The order of cards, which realize the low level signal interfaces, in EGSE from the
bottom panel to top is:

- PCM-3350 processor card,
- PCM-3618 8-port RS422/485 High-Speed Module; i/o=300h irq5
- PCM-3712 D/A Converter, 2 Channel Analogue Output; i/o=220h, +-10V
- PCM-3718-HG 12 bit DAS Module; i/o=280h
- Slow Telemetry Card (bit serial)

The detailed description of the cards is attached to this document (Appendix 1, 2, 3..)

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 20

3.3 The tasks of the user interface computer

The user interface software is running in the Windows 2000/XP multitasking
operating system. The PWCegse.exe software is prepared in the National Instruments
LabWindows/CVI development environment. The integrated LabWindows/CVI
environment features code generation tools and prototyping utilities for fast and easy C
code development. It offers a unique, interactive ANSI C approach that delivers access to
the full power of C with the ease of use of Visual Basic. Because LabWindows/CVI is a
programming environment for developing measurement applications, it includes a large
set of run-time libraries for instrument control, data acquisition, analysis, and user
interface. LabWindows/CVI also contains many features that make developing
measurement applications much easier than developing in traditional C environments. The
user interface program runs in multithreading mode.

A multithreaded program is a program in which more than one thread executes the
program code at a single time. A single-threaded program has only one thread, referred to
as the main thread. The operating system creates the main thread when the operating
system begins execute a program. In a multithreaded program, the operating system
allows each thread to execute code for a period of time before switching execution to
another thread. The period of time during which a particular thread executes is referred to
as a time slice. The act of stopping execution of one thread and starting execution of
another is referred to as a thread switch. The operating system typically can perform
thread switches quickly enough to give the appearance of concurrent execution of more
than one thread at a time.

A program that performs data acquisition and displays a user-interface is a good
candidate for multithreading. In this type of program, the data acquisition is the time-
critical task that might be subject to interference by the user-interface task. In the
PWCegse program the TM flow reception is a data acquisition, whish realized trough
Ethernet connection. In the PWCegse program the main thread is used to create, display,
and run the user interface. Secondary thread is used to perform the time-critical operations
such as the data acquisition. LabWindows/CVI provides two high-level mechanisms for
running code in secondary threads. These mechanisms are thread pools and asynchronous
timers. A thread pool is appropriate for tasks that need to be performed a discrete number
of times or tasks that need to be perform in a loop. An asynchronous timer is appropriate
for tasks that are to be performing at regular intervals. The thread pool mechanism is used
for handling the telemetry channels as Ethernet interface, Radio Amateur telemetry
channel and the bit serial channel.

The PWCegse software has a so called panel system. Panel is a separate window
having visualization text boxes and control bottoms. The “main” panel has a menu line, a
tool bar too. The buttons are to control the PWC activity. The graphical user interface is
suitable to control not only the Obstanovka EGSE, but in the BSTM & DACUs EGSE
case the simulated sensor activity too. By the PWCegse program different data streams on
serial lines and different analogue voltages for DACUs can be simulated.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 21

The user can control the following simulated sensor activity:

• set the analogue outputs
• activate the burst mode message of the SAS3 experiment,
• activate the burst mode message of the CORES experiment,
• switch the power supply of the experiments off / on,
• send test on / off command to the DFM2 experiment,
• send test commands to the CORES experiment,
• send commands and parameters to the LP1, LP2, DP1, DP2 experiments,
• set the visibility mode for the radio channel.

The received data of the EGSE is displayed. Each data source is displayed in

separated window. It is organized as a so-called tabulator panel (tabpanel). The data
directions are:

• slow telemetry analog measurement,
• bit serial data,
• amateur radio channel, and
• on-board Ethernet.

The control (switch on/off; control of sensors modes: burst, test) of sensors is realized

by using buttons. To send different parameters to sensors also should initialize by button
and separate panel can be composed (in hex form) the message for the sensors.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 22

3.4 User interface of the control PC
In the default case the PWC EGSE user interface program (PWCegse.exe) is in the

C:\Program Files\PWCegse directory, or its icon (Figure 6.) is already on the desktop.

Figure 6. The icon of the PWCegse.exe on the desktop

The program after its starting, it will load the PWCconfig.ini file. The
PWCconfig.ini file is a readable text file and it is (has to) located in the same project
directory (default C:\Program Files\PWCegse). This PWCconfig.ini file is a simple
interface for storing and accessing hierarchical configuration information using .ini-style
files or Windows Registry Keys. The ini file for the PWCegse has four sections, and each
section there are tags. The .ini-style files have the following format:

[SimIn]
IP = "127.0.0.1"
iPort = 5193

[SimOut]
IP = "127.0.0.1"
iPort = 5194

[CWD]
IP = "192.168.0.100"
iPort = 1000

[DFM]
IP = "192.168.0.110"
iPort = 1001

[RFA]
IP = "192.168.0.120"
iPort = 1002

[DP]
IP = "192.168.0.130"
iPort = 1003

[LP]
IP = "192.168.0.140"
iPort = 1004

[SAS3]

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 23

IP = "192.168.0.150"
iPort = 1005

[CORES]
IP = "192.168.0.160"
iPort = 1006

[Directories]
TcTm = "f:\\Documents and Settings\\ISS\\PWCegse\\tmtc"
AmRadio = "c:\\FileZillaFTP\\Documents\\Anonymous"

[HKDefinitionFiles]
Cores.0 = "DefCores.txt"
BSTM.0 = "DefBSTM.txt"
CWD.0 = "DefCWD.txt"
SAS3.0 = "DefSAS3.txt"
SAS3.1 = "DefSAS31.txt"

[TMfilter]
BSTM = 0
DACU1 = 0
DACU2 = 0
SAS3 = 0
LP_1 = 0
LP_2 = 0
DP_1 = 0
DP_2 = 0
RFA = 0
DFM_1 = 0
DFM_2 = 0
CORES = 0
CWD_1 = 0
CWD_2 = 0
HK = 0
SC = 0
HEX = 1

Where "section 1" is the “input parameters” for TCP/IP connection (TM flow),

"section 2" is the “output parameters” for TCP/IP connection (TCs and simulator control),
"tag 1" is the TCP/IP address, "tag 2" is the Port number. "section 3" til "section 9"
contains the TCP/IP connection parameters for the corresponding distribution server port.
The "section 10"“section 3” is the default directories, which have been saved for TM (tag
1) and for Amateur Radio files (tag 2). The "section 11" is the group of the HK Definition
files. Each tag defines the file name for decoding of HK packets into readable form. The
tag names contains the sensor name and the sid for the corresponding HK packet
separated by a “.”. The valid sensor names are: ”BSTM”, “DACU1”, “DACU2”, “SAS3”,
“LP1”, “LP2”, “DP1”, “DP2”, “RFA”, “DFM1”, “DFM2”, “CORES”, “CWD1”,
“CWD2” (the naming is not case sensitive). The valid sid number is between 0 and 9. If

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 24

the definition file, which is declared in the ini file does not exist there will be an error
message. The implemented decoding definition for the sensors will be listed in a timed
panel (Figure 7.). The PWCconfig.ini file can be edited by any character oriented editor.
The configuration file will be refreshed with a new content if the new configuration will
be saved during the PWCegse program running (Menu Line: 1. Network>Definition of
TCP Address>OK; 2. Directory>Save Default Directory; 3. Directory>Save Def.
Am.Radio Directory). The HK decoding definition files (section 4) can be edited by an
external text editor. The advantages of storing information in this type of standard fashion
are:

- Humans can read (and potentially edit) the files and Keys.
- Adding new information to the file does not change its format.

Figure 7. The list of HK decoding definition files

The User Interface is based on the so-called panel (like windows) oriented
graphical interface. Panels are a well separated part of the screen and they can be moved
and closed. To Closing the main panel (Figure 8.) the control activity will be stopped and
for control the PWC the PWCegse.exe program has to run again.

There are different areas of the main panel:

1. Menu line
2. Toolbar line
3. Tabpanels
4. Visibility control
5. Sensors’ simulation control buttons
6. Sensor control buttons
7. Script Control
8. Quota request and FFT spectrum display buttons
9. TM flow archiving (save to file)
10. Connected EGSE units

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 25

Figure 8. The main panel of PWCegse

3.4.1.Menu line

The menu is a list of options from which a user can make a selection in order to
perform a desired action, such as choosing a command or applying a particular format
to part of a document. Menu is used as a means of providing the user with an easily
learned, easy-to-use alternative to memorizing program commands and their
appropriate usage. The menu line has eight menu items. The menu line has the
following structure:

File
 Read TM File
 Load HK Decoder File
 Exit

Network
 Register to the Simulator for Telemetry
 Register to the Simulator for Command
 Register TM & Command Direction
 Select Active EGSE for TM

Install TM Distribution Server
Data Logging
Disconnect Telemetry Direction from Simulator

 Disconnect Command Direction from Simulator

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 26

 Disconnect TM & Command Direction

Uninstall TM Distribution Server
Definition of TCP Address

Option
 Byte Order for Header
 Word Order for Header
 Byte Order for Data
 Word Order for Data
 16 Words in Line
 8 Words in Line
 Log File Size
 Froze Background Panel

Stop by Sections
Clear Section

Directory
 Select Default Directory
 Save Default Directory
 Select Def. Am.Radio Directory
 Save Def. Am.Radio Directory

Script
 Record > Save
 Select > Run
 Generate File

TabPanels
 Sensors’ TC
 Bit Serial Telemetry
 Amateur Radio
 ISS Network
 Chart
 CWD1 burst, test
 CWD2 test
 CWD2 burst
 CWD1/2 sid 1
 DFM1 Ch.1-3
 DFM1 Ch.4-6
 DFM1 Ch.7-11

Clear All Box

Display Filtering
 Select Filterings’ Items
 Save Filters’ Selection

About

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 27

In the File menu the Read TM File item gives possibility to select one earlier

stored TM information to study its content in off-line mode. The same possibility is in the
Toolbar line (first icon). The Load HK Decoder File reloads the definition files of HK
packets, this feature is especially useful in preparation phase. The Exit item stops the
communication on the Ethernet lines and closes the user interface program, this effect can
be reached by two other way: 1. press the last icon in the Toolbar line (STOP); 2. close by
the Windows usual way selecting the x bottom in right upper cornel of the PWCegse
panel.

In the Network menu a connection can be initiated (Register to the Simulator for
Telemetry, Register to the Simulator for Command or Register TM & Command
Direction) or disconnect the PC from the signal level unit, which is the server (Disconnect
Telemetry Direction from Simulator, Disconnect Command Direction from Simulator or
Disconnect TM & Command Direction). Connect or Disconnect both direction can be
done by pressing the appropriate icons in the Toolbar line. The last item (Definition of
TCP Address) gives possibility to configure the TCP/IP addresses depending of certain
conditions of the PWC EGSE system location environment requirements. It can be done
in offline mode too. Selective data logging can be performed using the Data Logging
option. It means that the incoming data will be stored in different folders based on the
source of the data. When user selects the Data Logging option a new window will appear
where the data sources for the logging can be selected.

In the Option menu the basic option settings can be made. Using the Byte Order
for Header, Word Order for Header, Byte Order for Data and Word Order for Data
options the word and byte order in the received packets header and data segment can be
changed. The 16 Words in Line and 8 Words in Line options are useful for setting the line
length in the tab panels’ text boxes. During the logging of the received data the program
creates a log file and stores the data in it while its size is under a predefined limit. If the
size reaches that limit, the system automatically closes it and starts to store the further
data in a new file. The Log File Size option sets this limit. The Froze Background Panel
option is suitable to freeze the printing to the tab panels witch are not active. If this option
is selected than all the data arriving from other sources than the one corresponding to the
selected tab panel will not be displayed.

In the Directory menu the location of the default logging directory and the
location of the amateur radios files can be changed.

The Record > Save option in the Script menu is appropriate for start the saving of
the user interaction is the graphic user interface which can be played using the Select >
Run option from the menu.

In the tab panels menu sets the visible tab panel. The graph panels are listed under
the Chart menu. Using the Clear All Box option all the tabpanels can be cleared.

3.4.2.Toolbar line

The Toolbar line has Icons as buttons, when these icons are clicked on with
mouse, certain functions of the menu line items are activated. The icons make short cut to
the File > Read TM File, to Network > Register TM & Command Direction, to Network >
Disconnect TM & Command Direction; and to File > Exit menu items correspondently of
the order of icons. The fourth icon activation clears all tabpanel textboxes and the CWD
graph. The last icon finishes the running of the PWCegse program itself.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 28

The activity of the Obstanovka experiment is determined by the cyclorama

running in the BSTM. The cyclorama is a sequence of commands, which are executed in
the given time. This type of sequences can be prepared in the EGSE and they execution
can be tested. The sequence file is a readable XML type file, and it can be prepared by
any of Editor Software or any of dedicated XML Editors, but it can be prepared by
pressing the buttons in the required sequences and inserting appropriate delay time
between the actions/commands. Using the EGSE User Interface to prepare the
Obstanovka sequence also generates an XML file. The generated file is the so called
script file. This file should be converted for the BSTM (excluding synchro pattern, CRC
word and control of the sensor simulators) and using the stand alone box of EGSE will be
writes by Linux system into the HDD, which will be inserted into BSTM unit. The syntax
and the detailed description of the XML script file are detailed in chapter 5.

HK packets of the different sensors can be visualized into readable text form
(instead of Hex Dump). The conversion is working on the base of external definition files.
The detailed syntax of the definition file is described in chapter 6. It gives possibility to
visualize the parameters in decimal or hexadecimal forms.

Any TM file can visualized in tabpanels with drag and drop technique. You can
select the actual file (from a file lists of any windows program: Windows Commander,
Total Commander, Windows Explorer) and keeping pressing down the left button of
mouse moving (dragging) it into the PWCegse main panel. Release the mouse button and
the selected file will be processed and the result will be displayed in the appropriate text
box.

3.4.3. Tabpanels

The data traffic of the different hw/sw interfaces is displayed in the Tabpanel
window. There are five different overlapping panels. The firs four corresponding to the
different data sources while the last panel shows the CWDs graph:
1. Sensors’ TC,
2. Bit Serial Telemetry,
3. Amateur Radio,
4. ISS Network.
5. Graph
The Sensors’ TC panel displays data received by the simulated experiments.
The Bit Serial Telemetry panel shows data transferred through that interface.
The Amateur Radio panel displays the content of one selected file.
The ISS Network panel shows data sent to that interface.
Graph displays the CWD1, CWD2 and DFM1 instruments signals from different
channels. The system refreshes a chart only if it is visible. In off-line (disconnected state)
the Graph panel gives the ability to process a archive file and browse the waveforms
saved in the selected file. This can be done via the ‘SELECT’ button or simply ‘drag and
drop’ the file to the Graph panel.

Each panel preserves its own control settings. The operator can enable or disable
the scrolling and the refreshing of the panel, switching the Scroll Off/On or freezing the
panel. A frozen panel is not refreshed, the new data will not displayed on it. When Scroll
is On, any new data will appear in the bottom of the panel, and the last information will

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 29

be displayed, even if previously the operator scrolled it up. It is possible to scroll over the
panel by the Up and Down buttons or dragging the scrollbar on the right side. It is
recommended to switch the Scroll to the Off state or freeze the panel before examining
the content of the panel. Using the Search facility, a search pattern can be set and searched
forward or backward.

The content of the active panel can be cleared pressing the Clear button.

The settings of the Option and Display Filtering menus apply to the four panels

simultaneously.

3.4.4. Visibility control

The ISS Network and the Bit Serial Interface can be activated or deactivated
separately. When one is active, it accepts data; otherwise the interface is inactive.

Selecting the A.Radio button, the directory containing the amateur radio data files
can be selected and displayed. Selecting and opening a file from it, the content of this file
will be displayed in the Amateur Radio panel.

3.4.5. Sensors’simulation control

The CWD and DFM1 experiments produce analog signals measured by the
DACUs. There are two analog outputs available in the EGSE to simulate analog outputs.
First set the required value in the range +/- 10 V, and press the Analog Setting Load
button.

The simulated LP, DP, CORES, RFA, SAS experiments produce dummy science
data packets. The content of these packets can be selected from the predefined items (all
00, all ff, increasing bytes, etc.), and the selected Test Pattern can be loaded to the
experiments simulator.

3.4.6.Sensors’ control

A green box indicates the communication of DACU units with the BSTM.

The On/Off button of the sensors indicates with green color the powered state of
the sensor, evaluating the slow telemetry analog signals. Pressing the button, the sensor
will be switched off or on alternatively.

Some experiments have the possibility to be controlled:

Pressing the Burts button of the SAS3 experiment, the burst data sampling mode
of the DACU1 unit will be activated through the SAS3 simulator.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 30

The SAS3 experiment accepts some parameters. To compose them press the Cmd

button under the SAS3 label. The desired parameters can be set on the activated panel (see
Fig. 9). Press the Send button to send the parameter setting command to the SAS3. Use
the File Selection button to load settings from file.

Figure 9. SAS3 commands

The LP, DP and RFA experiments accept parameters and mode setting commands.

The mode commands are to be defined! Pressing the Param button under the sensor’s
label the Parameter Definition panel appears (see Fig. 10). Type in two digit hexa values
in the input field. The parameter line can be saved into a file pressing the Save button. A
previously saved parameter can be loaded pressing the Open button. Pressing the Clear
button clears the input field. Pressing the OK button, the parameter will be sent.

Figure 10. Parameter definition

The CORES experiment simulator generates the burst data sampling mode
command for the DACU2 unit by pressing the Burst button under the Cores label.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 31

Pressing the Mode button under the Cores label the Cores Command panel

appears (see Fig. 11). Select the desired command type then fill the CORES Hex
Parameters field. The send button will be active only if the parameters corresponding to
the selected command type are typed. Note that the Command filed indicates the complete
command to be sent. The Parameters are always in hex format.

<SetCORES_Global_Mode value="ef"/>
<SetCORES_Software parameter="a2" value="3f"/>
<CORES_Start_Macro msadd="54" lsadd="e3"/>

Figure 11. CORES Command window and XML example

The test mode of the DFM2 experiment can be switched on / off pressing the Test

M button under the DFM2 label.
There is a way to send telecommands prepared previously. Select a sensor under

the TC File selection button, and press the button. Select a telecommand file to be
downloaded. The file will be segmented, if necessary.

3.4.7. Script control

The sensor’s control command described in the previous section can be saved in a
so-called script file. It is possible later to “execute” this file. The scipt file is a text file,
with .xml extension. It can read and edited later with any text editor.

To make a new script file first press the Selection button. First of all decide,
whether the commands should be sent to the BSTM or not. Answer No on the “Do you
want to control during recording?” question, if you are not connected to the BSTM. After
it select the directory and give a new file name to the new script file, or select an existing
one, to overwrite it. Fill the header of the file in the next panel (Created by and Comment
fields). Press Start saving. The Recording button changes to green ON/off, indicating that
the following commands will be saved. Pressing this button will finish the recording and
closes the script file.

During recording any sensor control command will be saved. This commands are:

1. Powering commands
2. SAS3 Commands
3. LP, DP, RFA Mode and Param commands

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 32

4. CORES Mode command
5. DFM2 Test M

The Burst commands are controlling the simulator, and not the sensors, so they are

not saved.
Delays can be inserted between the telecommands: set the delay value and press

the Ins.Del. button. Unless delays the script actions will be executed continuously.
There are some advanced features too: Loops, even embedded loops can be

defined. First select the Count, then press Start loop. The Opened counter shows the loop
depth. Close the actual loop level pressing the End loop button. The next useful feature is
the include facility: press the include button and select a script file. During execution the
commands of the included file will be executed from this point. After the last command of
the included file the control returns to the next command of the original script file. Of
course an included file itself can contain other includes.

To execute an existing script file first press the Run Selection button and select the
script file. The script file name appears, the label of the Selection button changes on
Selected. Press the Run > button to start the execution. The label color and text changes
on green Running. Now the execution can be aborted, paused or suspended to manual
step-by step execution by pressing the appropriate button. The execution can be started
also by pressing the Step button. During execution it is always possible to change between
Run, Step and Pause state.

3.4.8. Quota and FFT buttons

Switching the Quota button On forces the BSTM to send data to the ISS Ethernet and to
the Bit serial interfaces without a new predefined quota limitation. This function is useful
for test purposes in connection with the TM flow archiving.
FFT button displays the spectrum window and enables the Fast Fourier Transformation
for a set of channels. The spectrums are counted for the CWD1 channel 1, channel 2 and
channel 3, CWD2 channel 1, DFM1 channel 1, channel 2 and channel 3.

3.4.9. TM flow archiving (save to file)

Press the Save to File button. The automatically generated file name will be displayed. All
received packets will be stored from this moment on. To close the file, press the button
again. The file will be closed automatically at size 1.4 M byte. If the file can’t be opened,
you should select (and save) the Default Directory in the Directory menu.

3.4.10. Amateur Radio TM flow reception

On the ISS there will be a separated computer for amateur radio connection using
Windows operating system and acting as an FTP file server. The BSTM computer
transfers scientific data packages to this computer in every hour using the FTP protocol.
For every sensor there will be a separate file with maximum length of 50 kilobyte. The

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 33

EGSE simulates the amateur radio computer - it acts as an FTP file server. The transferred
files can be examined using the user interface, or copied to another computer.

Installing FTP Server on EGSE

 For the FTP server in EGSE, a computer with a Microsoft XP operating system, a
GNU licensed software called FileZilla is applied. FileZilla is accessible on the Internet,
at the address http://sourceforge.net/projects/filezilla/. At this site, there could also be
found the binaries for Microsoft’s operating systems Win95, Win98, Windows NT4, 2000
and XP, the documentation FileZilla, and the FileZilla’s sources codes.
 On EGSE, the FileZilla version 0.9.11.0 (built on 2005-11-13 15:10) is installed
and configured, below the “C:\Program Files\FileZillaFTP” directory. The installation
itself is quite simple, the process is a menu driven. The downloaded FileZilla_Server-
0.9.11.exe should only be started keeping its default settings.
 The configuration file of the FileZilla is an XML formatted file. It is named
“FileZilla Server.xml”. This XML file is mostly self-explanatory. It is located under the
installation directory of the FTP server, namely “C:\Program Files\FileZillaFTP”.
 The server configuration could be set up editing this XML file or using the graphic
user interface called “FileZilla Server Interface.exe”. For transferring data from BSTM to
EGSE, the Anonymous FTP user was created with password. The working directory for
this user is the directory called C:\FileZillaFtp\Documents\Anonymous. For the
Anonymous user, the full access right was granted on this directory.
 When the EGSE is connected to an open “network”, firewall software has to be set
up and switch on. If this is the case, an FTP connection has to be permitted for BSTM.

Installing FTP client on BSTM

 On the BSTM, the FTP client was installed from the software packages of SuSE
8.1. The ftp executable is located below the directory /usr/bin. The configuration file for
the ftp connections is called .netrc. This contains the machine name or its IP address, the
user id and the user’s password. The file is located in the home directory of the user
executing the ftp command.

http://sourceforge.net/projects/filezilla/

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 34

“FileZilla Server.xml”

- <FileZillaServer>
- <Settings>
 <Item name="Serverport" type="numeric">21</Item>
 <Item name="Number of Threads" type="numeric">2</Item>
 <Item name="Maximum user count"

type="numeric">0</Item>
 <Item name="Timeout" type="numeric">120</Item>
 <Item name="No Transfer Timeout"

type="numeric">120</Item>
 <Item name="Allow Incoming FXP" type="numeric">0</Item>
 <Item name="Allow outgoing FXP" type="numeric">0</Item>
 <Item name="No Strict In FXP" type="numeric">0</Item>
 <Item name="No Strict Out FXP" type="numeric">0</Item>
 <Item name="Login Timeout" type="numeric">60</Item>
 <Item name="Show Pass in Log" type="numeric">0</Item>
 <Item name="Custom PASV Enable" type="numeric">0</Item>
 <Item name="Custom PASV IP" type="string" />
 <Item name="Custom PASV min port"

type="numeric">0</Item>
 <Item name="Custom PASV max port"

type="numeric">0</Item>
 <Item name="Initial Welcome Message" type="string">%v

written by Tim Kosse (Tim.Kosse@gmx.de) Please visit
http://sourceforge.net/projects/filezilla/</Item>

 <Item name="Admin IP Bindings" type="string" />
 <Item name="Admin IP Addresses" type="string" />
 <Item name="Enable logging" type="numeric">0</Item>
 <Item name="Logsize limit" type="numeric">0</Item>
 <Item name="Logfile type" type="numeric">0</Item>
 <Item name="Logfile delete time" type="numeric">0</Item>
 <Item name="Use GSS Support" type="numeric">0</Item>
 <Item name="GSS Prompt for Password"

type="numeric">1</Item>
 <Item name="Download Speedlimit Type"

type="numeric">0</Item>
 <Item name="Upload Speedlimit Type"

type="numeric">0</Item>
 <Item name="Download Speedlimit"

type="numeric">10</Item>
 <Item name="Upload Speedlimit" type="numeric">10</Item>
 <Item name="Buffer Size" type="numeric">4096</Item>
 <Item name="Admin port" type="numeric">14147</Item>
 <Item name="Serverports" type="string">21</Item>
 <Item name="Custom PASV IP type"

type="numeric">0</Item>
 <Item name="Custom PASV IP server"

type="string">http://filezilla.sourceforge.net/misc/ip.php
</Item>

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 35

 <Item name="Use custom PASV ports"

type="numeric">0</Item>
 <Item name="Mode Z Use" type="numeric">0</Item>
 <Item name="Mode Z min level" type="numeric">1</Item>
 <Item name="Mode Z max level" type="numeric">9</Item>
 <Item name="Mode Z allow local" type="numeric">0</Item>
 <Item name="Mode Z disallowed IPs" type="string" />
 <Item name="IP Bindings" type="string">*</Item>
 <Item name="IP Filter Allowed" type="string" />
 <Item name="IP Filter Disallowed" type="string" />
 <Item name="Hide Welcome Message"

type="numeric">0</Item>
 <Item name="Enable SSL" type="numeric">0</Item>
 <Item name="Allow explicit SSL" type="numeric">1</Item>
 <Item name="SSL Key file" type="string" />
 <Item name="SSL Certificate file" type="string" />
 <Item name="Implicit SSL ports" type="string">990</Item>
 <Item name="Force explicit SSL" type="numeric">0</Item>
 <Item name="Network Buffer Size"

type="numeric">65536</Item>
- <SpeedLimits>
 <Download />
 <Upload />

 </SpeedLimits>
 </Settings>
 <Groups />
- <Users>
- <User Name="anonymous">
 <Option Name="Pass" />
 <Option Name="Group" />
 <Option Name="Bypass server userlimit">0</Option>
 <Option Name="User Limit">0</Option>
 <Option Name="IP Limit">0</Option>
 <Option Name="Enabled">1</Option>
 <Option Name="Comments" />
- <IpFilter>
 <Disallowed />
 <Allowed />

 </IpFilter>
- <Permissions>
- <Permission

Dir="C:\FileZillaFtp\Documents\Anonymous">
 <Option Name="FileRead">1</Option>
 <Option Name="FileWrite">1</Option>
 <Option Name="FileDelete">1</Option>
 <Option Name="FileAppend">0</Option>
 <Option Name="DirCreate">1</Option>
 <Option Name="DirDelete">1</Option>
 <Option Name="DirList">1</Option>
 <Option Name="DirSubdirs">1</Option>
 <Option Name="IsHome">1</Option>

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 36

 <Option Name="AutoCreate">1</Option>

 </Permission>
 </Permissions>
- <SpeedLimits DlType="0" DlLimit="10"

ServerDlLimitBypass="0" UlType="0" UlLimit="10"
ServerUlLimitBypass="0">

 <Download />
 <Upload />

 </SpeedLimits>
 </User>

 </Users>
 </FileZillaServer>

“.netrc”

machine amr
login anonymous
password anonymous

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 37

3.5 Program modules of embedded processor

A LINUX based dedicated real-time multitasking operating system is running,
which has the following application tasks. The operating system is resident in the flash
memory of the embedded processor board.

IP
communicationfifosrt_fifos ethrt tasks tasks

cwd_r

rt_egse

egse_s.FIFO

egse

rt_bsc
(lp1)

lp
(lp1)

rt_bsc
(dp1)

lp
(dp1)

sim_dfm2
com0

rt_bsc
(cores) cores

rt_bsc
(lp2)

lp
(lp2)

rt_bsc
(dp2)

lp
(dp2)

rt_bsc
(rfa) rfa

sas3

.EGSE

egse_w

egse_p

sas3_b
start

sas3_g

i.f.

com2

com3

com4

com6

com7

com8

D/A

A/D
arc_r

dfm2

start /stop programs by egse on powering

icm
icm_r

pvk_g
power

Figure 12. Structure of the embedded software

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 38

rt_egse

This program measures the bits analog signals with one Hz sampling rate. It senses the
change of the powering signals of the experiment.

egse

This program starts or stops the experiments depending on the state of the powering
signals. The following experiments are simulated: LP1, LP2, DP1, DP2, CORES, RFA,
DFM2, SAS3.

cwd_r

This program sends the measured analog values (bits) to the fifo .FIFO.

read_send

This program reads data from the fifo .FIFO, and forwards them through the Ethernet to
the UIF computer.

egse_w

This program accepts commands from the UIF computer. Depending on the command it
sets analog outputs, starts the sas3 burst mode or forwards the command to the fifo
.EGSE.

egse_p

This program reads data from the fifo .EGSE and forwards them through the Ethernet to
the BSTM computer.

lp

Produces data trafic of the lp, dp, rfa experiments.

cores

Produces data trafic of the cores experiment.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 39

dfm2

Produces data trafic of the dfm2 experiment.

sas3

Produces data trafic of the SAS3 experiment.

sas3_b

Generates a burst mode message from the sas3 experiment.

icm_r

Accepts data from the low telemetry system and forwards them to the FIFO.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 40

4. Functional block diagrams of cards of the embedded system

NS GX1
Processor

SDRAM
Interface

Video
Interface

Serial
Packet

PCI
Interface

S.O.DIMM
SDRAM

Clock
Generator

MD[63:0]

82559
LAN Controller

VGA & TFT LCD

Primery
IDE Port

Secondary
IDE Port (Flash)

2 x
USB Port

Cx5530(A)
Core
Logic

PC-104
Connector

BIOSSuper I/O

FDD LPT IrDA COM1 PS2

RTC

COM2

PCI Local Bus

ISA Local Bus

Figure 13. Functional Blocksheme of Processor Card

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 41

Address
Decoder

IS
A

 L
oc

al
 B

us

Status

Data
Buffer

DMA
Logic

IRQ
Logic

Data
MUX RAM Channel

Scan Log.

Trigger
Logic

Divider

A/D
Converter

Two 8-bit
In/Out

Counter #0

Counter #2

Counter #1

Prog.Gain
Amplifier

10 MHz
Osc.

In/Out

Analog
MUX Input

10 MHz

1 MHz

External trigger

EOC

ASIC

DMA signals

IRQ signals

Internal Data Bus

Register
Select

Figure 14. Block diagram of the12-bit DAS Module with Programmable Gain

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 42

IS
A

 L
oc

al
 B

us

Decode
Circuit

AD7837

OPDouble Buffer
12 bit DAC

DA_V1

DA_I1

AGND1

VREF1

Double Buffer
12 bit DAC

DA_V2

DA_I2

AGND2

VREF2

OP

Figure 15. Functional Blockcheme of the two channel analog output card

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 43

5. PWCscript – capture/playback module documentation

5.1. General description

PWCscript is a capture playback module designed for the PWCegse instrument
system. The goal of the module is to aid the user through the acquisition process (onboard
sequence) by giving the ability to record and playback sequences of user actions
performed on the PWCegse graphical user interface. The user action sequences are
recorded in a form of XML so it is easily readable by the user and can also be easily
processed by computers.

This documentation gives a brief overview of the PWCscript module. In the next
section the syntax of the recorded script file and the usage of the module will be
discussed. The last section of the document presents the internal working of the module.

5.2. User documentation

5.2.1 Syntax of the PWCscript xml file:
The exact syntax of the xml file used to store the scenario is described by the
pwcscript_v1.dtd document type definition file.

General tags:
(loop, include, define_variable, del_variable, set_variable, if, while)

<loop count=””></loop>
A specific number of iteration over the sequence of sub tags
count: the number of iteration

<include fileURI=””/>
 This tag is replaced by the content of the root node in the referenced file

fileURI: path for a valid xml script file to include into the processing
sequence. The xml file must be valid

<if statement=””></if>
The sub tags are processed if and only if the value of the statement
attribute is true

<while statement=””></while>
The sub tags are processed iteratively while the value of the statement
attribute is true

<define_variable name=”” type=””/>
definition of a variable

name: the name of the variable
type: the type of the variable, possible types are: STRING, INT,
FLOAT

<set_variable name=”” value=””/>
 set the value of a previously defined variable

name: name of the variable
value: new value

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 44

<del_variable name=””/>

 delete a variable

Variable reference and arithmetic expressions in the attributes:

$ref; ref is a previously declared variable name. This reference can be used in
any attributes, and it is completely replaced by the actual value of the
referenced variable before processing the tag.

$[expr] expr is an arithmetic expression build up by variable references, arithmetic
operators (+, -, * and /) and numeric or string constants. It is completely
replaced by the value of the expression before processing the tag.

Except: if and while tags:

In this case the whole attribute processed as an expression, so the $[] marking is
not necessary. In addition to the four basic arithmetic operators the ‘==’ (equal),
‘!=’ (not equal), ‘>’ (greater than), and ‘<’ (less than) operators can also be
used.
(note that the ’<’, ’>’ characters are maintained by the xml parser as tag marking
characters!)

Specific tags:

This group contains the tags which describe interaction on the graphic user
interface.
<connection act=”” dir=””/>
 Establish a connection or disconnect from the server in the specified direction
 act: connection or disconnection
 dir: in, out, both
<turnSAS3supply act=””/>
 Send a turn on/off SAS3 supply string to the server
 act: on, off
<turnLP1supply act=””/>
 Send a turn on/off LP1 supply string to the server

 act: on, off
<turnDP1supply act=””/>
 Send a turn on/off DP1supply string to the server

 act: on, off
<turnDFM1supply act=””/>
 Send a turn on/off DFM1 supply string to the server

 act: on, off
<turnCWD1supply act=””/>
 Send a turn on/off CWD1 supply string to the server

 act: on, off
<turnCORESsupply act=””/>
 Send a turn on/off CORES supply string to the server

 act: on, off
<turnLP2supply act=””/>
 Send a turn on/off LP2 supply string to the server

 act: on, off
<turnDP2supply act=””/>

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 45

 Send a turn on/off DP2 supply string to the server

 act: on, off
<turnRFAsupply act=””/>
 Send a turn on/off RFA supply string to the server

 act: on, off
<turnDFM2supply act=””/>
 Send a turn on/off DFM2 supply string to the server

 act: on, off
<turnCWD2supply act=””/>
 Send a turn on/off CWD2 supply string to the server

 act: on, off
 <burstSAS3 act=””/>

 Send a turn burst on/off string to the SAS3
 act: on, off
 <burstCORES/>

 Send a turn burst on/off string to the CORES
 act: on, off
 <param type=”” value=””/>
 type: type of the parameter: sas3, lp1, dp1, lp2, dp2
 value: value of the parameter

 <delay type=”” value=””/>
 type: type of the parameter: day, hour, min, sec
 value: value of the parameter
 Insert a delay in the command flow before executes the next command

< turnISSvisibility act=””/>
 Send an ISS visibility, ethernet turn on/off string to the BSTM

 act: on, off

<turnAmRvisibility act=””/>
 Send an Amateur Radio visibility (connection), turn on/off string to the BSTM

 act: on, off

<turnBitSvisibility act=””/>
 Send an BitSerial connection (visibility), turn on/off string to the BSTM

 act: on, off

<setCORESmode packets ="" rate=""/>
Send command to set CORES mode
 packets: 1,2,3,4,5,6,7
 rate: 192, 128, 64 (=N frame/3sec, /375msec, /47msec)

 <setTestPattern pattern =""/>
 Send command for simulation (to EGSE) of test pattern
 pattern: 0, 1, 2, 3, 4

(incr: 0,1,2,…; 0,FF,0,FF,…; 55,66,55,66…; 0,0,0,…; FF,FF,FF,…)

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 46

<setAnalogChannels channel1 ="" channel2=""/>
 Send command for simulation (to EGSE) to setting the analogue output channels
 Channel1: in the range -10.000 …+10.000
 Channel2: in the range -10.000 …+10.000

<setSAS3_ADSPcmd value=""/>
 Send command to SAS3 ADSP card
 value: 0000 …FFFF (any four hex character)

<setSAS3_Generalcmd target = "" value=" "/>
 Send command to SAS3 “target” card
 target: ADSP, FSA, PC
 value: command string, max. 31 characters

Example

In the following example is demonstrated the following activity in XML script form:

1. General information about the XML file, including date of generation
2. PWC script start

a. Connection between control PC and embedded processor in both (TM and
TC direction)

b. Switch On the power supply of the SAS3 instrument
c. Wait 4 seconds
d. Send the 800d command to SAS3 the target is ADSP card
e. Send the 1234 command to SAS3 the target is the FSA card
f. Send the 4321 command to SAS3 the target is the PC card
g. Wait 4 seconds
h. Send the a40d command to SAS3 the target is ADSP card
i. Wait 6 seconds
j. Burst mode command for SAS3
k. Switch Off the power supply of the SAS3 instrument
l. Disconnection between control PC and embedded processor in both (TM

and TC direction)
3. PWC script end
4. Prepared by BSTM team
5. Comment: Test sequencies

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 47

5.2.2 The Script Control panel:

Figure 16. The Script Control panel in Recording Mode

Figure 17. The Script Control panel in Playback mode

The PWCscript module has a graphical user interface which provides the capturing
(recording) and playback functions.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 48

Capture

In capture state the module writes the user interactions to the specified xml file in
the same order as committed by the user on the PWCegse GUI. Capture state starts
after pressing the Recording button and selecting the destination file. The
Recording label on the Recording button initiates that the module is in capture
state. Stopping the capture mode can be done by the same button.

Playback

In playback state the module processes a specified script file. Initiating the
playback state can be achieved by the pressing of the Run button and selecting the
source script file. The processing of the selected script file can be controlled by the
four icon buttons.

Network connection

Disabling the network connection provides the ability to record a script file
without sending communication packets to the server. In disabled state the TCP/IP
function calls are overloaded with dummy functions to avoid the controlling of the
server.

Controlling of the module
 Script file name

- in capture mode sets the destination file name
- in playback mode sets the source file name, and the result of automatic

validation
o red: the script failed the validation. Not valid, can not playback
o green: the script file is valid, ready to start playback

 Recording

- Selection state: the module is not in capture mode. Pressing the button
in this state starts the capturing mode.

- Recording state: the module is in capture mode. Pressing the button in
this state stops the capturing process.

 Delay time

- a Delay tag can be inserted into the script with the Ins Del button. The
value of the delay is given in he Delay Time box while the unit of
measurement of the delay value can be either min (minute) or sec
(second)

- in playback state the Delay Time field contains the unexpired time from
the last delay tag

 Network

- sets the state of the network connection and enables control to use the
network

 Run

- Selection state: the module is not in playback mode. Pressing the button
in this state starts the playback mode

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 49

- Selected state: the module is in playback mode. The playback mode can

be restarted by pressing the button in this state
- Running state: indicates that currently a script file is under processing

 Playback control
 These control buttons enabled to use only in playback mode.

Abort
o stops and resets the script playing

 Run

o starts the playback of the selected script

 Pause

o stops but does not reset the playback

 Step
o step by step processing of the script

Record control
 These buttons are enabled for use only in capture mode.

 Start loop
o places a loop start tag to the script all the following actions will

be placed in the body of the loop until the matching loop end
tag

 Count

o the value of the count attribute in the loop start tag. The value of
the numeric box is used when the Start loop button pressed

 End loop

o places an end loop tag in the script

 Opened

o the number of the opened loop tag in the script file.

 Include

o places an include tag to the script

 FileURI

o the value of the fileURI attribute in include tag. The path and
name of a script file to include

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 50

5.3 Development documentation

This section gives a brief overview of the internal working and structure of the PWCscript
capture playback module. It is structured in two parts. One is a dynamic link library
(DomParserDLL.dll) containing the main xml processing functions. DomParserDLL.dll
requires the xerces-c_2_6.dll for operation. The other part contains the PWCegse software
specific function which are placed and compiled together with the original source code of
the software. The interface between the two parts will be also discussed in this section.

5.3.1. DomParserDLL.dll

This library contains the functions corresponding to the script processing. It provides 3
externally callable functions provided to access the functionality. These functions are
called parserInit, doParse and the parserTeminate. The parserInit function initializes the
parser and loads the xml script file while the parserTeminate terminates the parser and
clears up the memory. The doParse function starts the parsing process and returns only
once the process is completed.

The parsing process

In the first step all the script file is read and a document object tree is created from
it. The parser starts to walk through the nodes in the tree. As mentioned in the 2
chapter there can be two kind of node in a valid xml. The parser uses the specified
function pointers to call the handler functions for all of the nodes corresponding to
a specific tag. If an error occurred during the processing then it calls the
ErrorHandler else it calls first, the TagStartHandler and than the TagEndHandler
functions. The order of node parsing is strictly equivalent with the sequential order
of the corresponding tags in the script file. After the TagEndHandler is called for
the last node in the tree the doParse function returns.

5.3.2. Additional functions to PWCegse source

ParseTagStart function

- prototype: int CVICALLBACK ParseTagStart(char* Element,
char* Attributes[],
int Attr_num)

- implements the TagStartHandler function. It calls the tag name specific
handler function with the attribute array (Attributes[]).

ParseTagEnd function

- prototype: int CVICALLBACK parseTagEnd(char* Element)
- implements the TagEndHandler function.

ParseError function

- prototype: int CVICALLBACK parseError(char* ErrorMsg)

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 51

- implements the ErrorHandler function.

doParseThread function

- prototype: int CVICALLBACK doParseThread(void* ptr)
- this function runs in a new thread. It calls the doParse and the

parserTerminate functions of the IRFDomParserDLL.

TurnSupplyTag function

- prototype: int TurnSupplyTag(int iRes, char* Attr[])
- the specific tag start handler for the turn***supply tags.

ParamTag function

- prototype: int ParamTag(char* Attr[])
- the specific tag start handler for the param tags.

parseDelayTag function

- prototype: void parseDelayTag(char* Attr[])
- the specific tag start handler for the delay tags.

parseConnectionTag function

- prototype: void parseConnectionTag(char* Attributes[])
- the specific tag start handler for the delay tags.

ScriptSSS function

- prototype:
int CVICALLBACK ScriptSSS (int panel, int control, int event,

 void *callbackData, int eventData1, int eventData2)
- controls the script playback state. It can start, pause or abort the

playback.
o start

starts the doParseThread function in a new thread if is not
already started.

o pause
sets the playback state so that the ParseTagStart function
will not return until the state is not changed.

o abort
sets the playback state so that the ParseTagStart function
will not call the specific handler functions any more.

Validation function

- int Validation(void)
- performs the validation of the selected script file. Calls the parserInit

function initialize the file name and the error handler pointer than calls
the doParse. If a validation error occurs the error handler function will
be called.

PerformSave function

- prototype: void PerformSave(int iCtrl)

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 52

- writes the xml tag to the destination file corresponding to the iCrtl.

PWC_ClientTCPWrite function

- prototype: int PWC_ClientTCPWrite(unsigned int cHandle,
void* dPtr, int dSize,
unsigned int tout)

- overrides the ClientTCPWrite function. The ClientTCPWrite is called if
the Network control is enabled (see 2.2. Network).

PWC_ConnectToTCPServer function

- prototype:
int PWC_ConnectToTCPServer(unsigned int *conversationHandle,

unsigned int portNumber, char *serverHostName,
tcpFuncPtr clientCallbackFunction, void *callbackData,
unsigned int timeout)

- overrides the ConnectToTCPServer function.
The ConnectToTCPServer is called if the Network control is enabled
(see 2.2. Network).

PWC_DisconnectFromTCPServer function

- prototype
int PWC_DisconnectFromTCPServer(unsigned int onversationHandle)

- overrides the DisconnectFromTCPServer function.
The DisconnectFromTCPServer is called if the Network control is enabled
(see 2.2. Network).

5.3.3. IRFDomParserDLL communication interface

The DLL provides 3 externally callable functions for the controlling of the script
playback.

parserInit function

- prototype:
extern int parserInit(vihivStart_type fpStartHandler vihivEnd_type
fpTagEndHandler, vihivError_type fpErrorHandler, char* acFile)

o fpStartHandler
Pointer to the tag start handler function in the caller code.
The prototype of the function is given by vihivStart_type
discussed later in this chapter.

o fpTagEndHandler
Pointer to the tag end handler function in the caller code.
The prototype of the function is given by vihivEnd_type
discussed later in this chapter.

o fpErrorHandler

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 53

Pointer to the processing error handler function in the caller
code. The prototype of the function is given by the
vihivError_type discussed later in this chapter.

o acFile
Pointer to an array of chars containing the path to the xml
script file to process.

- this function initializes the parser so it must be called first. It sets the 3
call-back function pointer, opens the script file to read and initializes
the xerces XML DOM parser.

doParse function

- prototype: extern int doParse(void)
- this function call starts the parsing of the specified xml script file. The

doParse function returns only when the processing is complete.
parserTerminate function

- prototype: extern int doParse(void)
- this function terminates the parser, and cleans up the memory. It is

necessary to call this function after a doParse function call.

The caller of the IRFDomParserDLL should implement 3 externally callable functions to
handle the 3 main events of the script processing as discussed earlier. Only the prototypes
of the functions will be presented here.

vihivStart_type

- typedef int (*vihivStart_type)(char* chTagName,
char*[] chTagAttrList, int iAttrNum)

o chTagName
pointer to a null-terminated string containing the name of the
tag under process.

o chTagAttrList
pointer to an array of null-terminated strings containing the
attribute values of the tag under process. The array contains
the values in alphabetical order of the attribute name.

o iAttrNum
number of the elements in the chTagAttrList.

vihivEnd_type
- typedef int (*vihivEnd_type)(char* chTagName)

o chTagName
pointer to a null-terminated string containing the name of the
tag under process.

vihivError_type

- typedef int (*vihivError_type)(char* chErrorMessage)
o chErrorMessage

pointer to a null-terminated string containing error messages
corresponding to the error occurred during the processing.

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 54

6. Decoder files of the housekeeping packets

There can be two types of parameters defined in a decoder file, an enumerated type
(Enum) or an actual value (Actual). Enum types need to have a text description for every
possible parameter value. Actual type need to have a base description - either hexadecimal
or decimal. There is a possibility to make a hexadcimal dump (HexDump) of a certain part
from housekeeping packets.

Enum Type Format

[<Field No.>\s<Field Descr.>]\tEnum\t<Word Number>;<Start Bit>,<End Bit>
<Param1>=<Param1 Description>
<Param2>=<Param2 Description>
<Param3>=<Param3 Description>
.....
.....

Actual Type Format

[<Field No.>\s<Field Descr.>]\tActual\t<Word Number>;<Start Bit>,<End Bit>
<Base Type>

There are two commands to control or make more readable the output format in the
decoded panel boxes. The Comment insert explanation text, using the control character
‘^’ before Enum or Actual type definitions the automatic “carriage return” and “line feed”
characters will be eliminated in the decoded text.

<BaseType>
Base type can be ‘Dec’, ‘Hex’, ‘Linear’ or ‘Table’. In Dec or Hex mode the actual value
of the selected binary sequence (the binary number between <Start Bit> and <End Bit>)
will be printed either in decimal format or in hexadecimal format. In Linear mode a linear
interpolation will be executed on the selected binary number. In Table mode the printed
value will be selected from a table. The number of the curve uste to calculate linear
interpolation must be given after the ‘Linear’ or ‘Table’ keywords (eg.: ‘Linear 1:’ 1 is the
number of the curve). The corves must be predefined in a ‘table.txt’ file. See an example
belove for this file

TABLE
[Temp1 >1] (0;0) (1;1) (2;1) (3;2) (4;2) (5;3) (6;3) (7;4) (8;4) (9;5)
 (10;5) (11;6) (12;6) (13;7) :

[Temp2 >2] (0;0) (3;5) (6;7) (9;8) (12;8) (15;15) (18;17)
 (21;17) (24;12) (27;10) (30;15) (33;16)
 (36;16) (39;17) :

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 55

HexDump
[<Field No.>\s<Field Descr.>]\tHexDump\t<Start Word Number>;<End Word Number >

Comment
[<Field No.>\s<Text>]\tComment

The meaning of the definition fields:

Field No.

This must start at 1 and be incremented by 1 for each parameter field.
Field Desciptionr

A description of the parameter field
Text
 One line text string, which will be copied into the decoded panel box
Word Number

 This gives the location of the of the 16 bit word within the HK data.
The first word is 0, the second is 1 etc.

Start Bit
This gives the location of the least sign. Bit of the parameter within the
selected word.

End Bit
This gives the location of the most sign. Bit of the parameter within the
selected word.

Remark: 1. A single bit parameter (e.g. a flag) will have the same
value for Start and End bits.
2. The bits in a word should be numbered as follows:

Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Hexadecimal 1 D C 9

Binary 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1

 In this example, the Hex word 1DC9h is a word as seen on the PC screen from a TM
packet received by EGSE if selected the Word order (Menu > Option > Word Order of
Data). The result only on the screen will be C91Dh if from the menu selected the Byte
order (Menu > Option > Byte Order of Data). The decoding procedure executes word
order independently of the screen representation!

Param1

This is the value to which a description will be assigned e.g.
 0=Off, 1=On.
 This field should only be used if the type is Enum

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 56

Param1 Description

 This is the assigned description (On or Off in the above example).
This field should only be used if the type is Enum!

Base Type
 This should contain the word “Hex” or “Dec” to display the
parameter in Hexadecimal or Decimal format. This field should only be
used if the type is Actual!

Terminator characters
 RT Carriage Return
 \s Space
 \t Tabulator
 , comma
 ; semicolon

Reference: Obstanovka-EGSE-001
Issue: 1.4

Date: 5 February 2007
Page: 57

Example
In the DefCores.txt there are the following lines:
....
[6\sCORES Power1]\tEnum\t0;10,10
0=Off
1=On
[7\sCORES Temperature]\tActual\t0;0,9
Dec
[8\sCORES Command Echo]\tHexDump\t1;6
....

In the example the first word of the housekeeping data the bit 10 indicates a status (On or
Off) while the in lower part (0 - 9=10 bits) of the first word is a voltage value which will
be visualize in decimal form. This example (definition file) is not real definition of
CORES sensor HK data stream!!

The CORES sample HK data stream in words:

0. 079D
1. 1F00
2. 73E4
3. 8911
4. ….
5. …..

The first word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0/1 CORES Temperature value (0x39D)

Output result

 CORES Power 1 On
 CORES Temperature 925
 CORES Command Echo
 1F00 73E4 8911

Remarks:

1. There is a not real CORES definition file (DefCores.txt)!!!
2. The underlined text is from the sample DefCores.txt <Field Description>
3. The bold text is the decoded information from a sample CORES HK packet using

the not real DefCores.txt file
4. The real output will not have underline and bold text, they are only for this

explanation

	 1. General introduction of Electrical Ground Support Equipment
	2. The EGSE for Obstanovka
	 3. The EGSE for BSTM and DACUs
	
	3.1 Data communication inside the EGSE system
	 3.2 The tasks of the embedded computer
	3.3 The tasks of the user interface computer
	 3.4 User interface of the control PC
	3.4.1.Menu line
	3.4.2.Toolbar line
	3.4.3. Tabpanels
	3.4.4. Visibility control
	3.4.5. Sensors’simulation control
	3.4.6.Sensors’ control
	3.4.7. Script control
	3.4.8. Quota and FFT buttons
	3.4.9. TM flow archiving (save to file)
	3.4.10. Amateur Radio TM flow reception

	 3.5 Program modules of embedded processor
	 4. Functional block diagrams of cards of the embedded system
	5. PWCscript – capture/playback module documentation
	5.1. General description
	5.2. User documentation
	5.2.1 Syntax of the PWCscript xml file:

	5.3 Development documentation
	5.3.1. DomParserDLL.dll
	5.3.2. Additional functions to PWCegse source
	5.3.3. IRFDomParserDLL communication interface

	6. Decoder files of the housekeeping packets

